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To evaluate the suitability of the combined mean-field/surface hopping (MF/SH) algorithm (Prezhdo, O. V.;
Rossky, P. J.J. Chem. Phys.1997, 107, 825) for the simulation of realistic chemical environments, we have
implemented MF/SH for the nonadiabatic molecular dynamics simulation of the aqueous solvated electron.
The relaxation dynamics following both electron injection into pure water and photoexcitation from the
equilibrium ground-state electron-water system are considered. The validity of a mean-field evolution of the
classical variables is monitored via the deviations of the solvent coordinates and momenta between the mean-
field molecular dynamics trajectory and a reference adiabatic molecular dynamics trajectory. In agreement
with earlier MF/SH simulations on low dimensional model systems, our results show that divergence between
momenta occurs rather rapidly. Present results show that mean-field evolution is valid on a 30-70 fs time
scale for ground-state excitation and on a 7-10 fs interval for the electron injection environment. Even for
the shorter time cases, the times correspond to∼20 solvent time steps in simulation. Considering that estimated
electronic coherence times for excited state dynamics are considerably shorter, the results indicate that the
method is a viable one for high dimensional, strongly interacting systems.

1. Introduction

For many molecular processes in the condensed phase, the
fundamental events responsible for the observed chemistry are
inherently quantum mechanical in nature. A convenient fully
quantum dynamical treatment of the many-body problem
presently remains elusive and is normally implemented only
approximately even for a relatively small number of degrees of
freedom. This is not to say that an accurate qualitative
understanding of the prolific phenomena in solution photo-
chemistry, interfacial electron transfer in semiconductors, and
biological charge transfer, for example, is beyond the capacity
of current methodologies, but only that further innovations and
refinements are necessary for accessing complex systems and
for obtaining quantitative agreement with experiment. The use
of mixed quantum-classical (MQC) molecular dynamics (MD)
to elucidate the mechanistic pathways underlying a chemical
process in condensed media is a common practice nowadays.1,2

Although many methodologies have been proposed, no indi-
vidual approach has been shown to be generally applicable for
all system environments. Perhaps a more important consideration
is the ease with which the algorithm can be implemented and
extended for the simulation of large systems.

Mixed quantum-classical molecular dynamics derives its
popularity primarily from its simple concepts, straightforward
implementation, and ability to offer insight into key chemical
behaviors. The basic idea begins with the Born-Oppenheimer
separation of the nuclear degrees of freedom from the electronic.
Intuitively, we anticipate the more massive nuclei to follow
classical molecular dynamics, while the electrons obey the time-
dependent Schro¨dinger equation. This partitioning of the whole
system into a quantum subsystem coupled to a classical

subsystem greatly reduces the dimensionality of the quantum
problem. The idea of coupling classical variables with the
expectation value of quantum observables was first considered
by Ehrenfest,3 who showed that the time evolution of average
quantum operators adopts the same form as the classical
equation of motion. This observation leads directly to the mean-
field trajectory method (MFT),4-6 whereby classical particles
respond to the gradient of the expectation value of the energy,
taken over the time dependent subsystem wave function.
Although the electronic degrees of freedom respond rigorously
to the motion of the classical particles, the classical particles
evolve on an effective potential corresponding to an average
over quantum eigenstates. This classical evolution on an average
potential, however, cannot correctly describe systems having
sufficiently different adiabatic energy surfaces such that evolu-
tion on different surfaces leads to divergent trajectories. The
limitations and validity of the mean-field approach are well
documented.7-10 In particular, for short times, the MFT method
can be argued to be optimal.11 However, for longer times MFT
has a key flaw. To see this, we envision a nonadiabatic (NA)
event as occurring in three stages: an initial stage where the
wave function evolves from a pure state, an intermediate stage
as the wave function encounters a region of coupling and
evolves into a superposition state, and a final stage outside the
coupling region where the wave function evolves adiabatically
along alternative channels.12 During the intermediate stage, the
wave function is described by a superposition of different states
corresponding to evolution associated with the alternative
classical trajectories. The wave functions interfere with each
other initially, but as the trajectories diverge beyond the coupling
region, all coherence is lost and the corresponding wave
functions cease to interact;thus leading to propagation as
independent channels. It is this critical asymptotic branching
behavior that is absent from the MFT method.† Part of the special issue “William H. Miller Festschrift”.
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The traditional approach for incorporating NA transitions
within MQC MD is via surface hopping.13 Surface hopping
refers to a basis state expansion of the wave function and the
accompanying procedure for determining when ahopfrom one
basis state to other states occurs. In the original formulation,
the hopping probabilities were calculated from the complex-
valued coefficients and transitions were limited to localized
avoided crossings. The newest fewest-switches variant14 deter-
mines the transition probability flux via the time derivative of
the amplitudes and imposes no preconditions on where transi-
tions can happen. Although several flavors of surface hopping15-26

have been proposed since its introduction, they all share a
common architecture of coexisting quantum subsystems repre-
sented by aprimary, anauxiliary, and areferencewave function.
The primary and reference wave functions arise naturally in the
surface hopping model, which distinguishes between the gener-
ally mixed-state wave function used for calculating the transition
probabilities (primary) and the currently occupied basis state
from which transitions occur (reference). The auxiliary wave
function governs the classical environmental dynamics; i.e., it
governs the calculation of the quantum force on this environment
and the total energy. Fundamentally, the primary wave function
carries information about quantum interference effects that are
important for calculating transition probabilities, and the
auxiliary wave function reflects the strategy for selecting the
appropriateclassical trajectory for the total system evolution.

In surface hopping, the reference state is chosen stochastically
at each time step based on the primary wave function. Tully’s
MDQT21 (molecular dynamics with quantum transitions; orig-
inally denoted MDET14 for electronic transitions) method
propagates the classical dynamics via a Hellmann-Feynman
force derived from the adiabatic reference state. Here, the
auxiliary wave function coincides with the reference wave
function, generating adiabatic dynamics interrupted by hops.
The primary wave function evolves coherently as a superposition
state with a time-dependent Hamiltonian determined by the
classical trajectory. For the SPSH27 (stationary phase/surface
hopping) algorithm of Webster et al., the force expression is
based on the Pechukas semiclassical evaluation of the electronic-
nuclear path integral representation of the propagator.28 Because
the effective nuclear potential is nonlocal in time, this method
actually has two auxiliary wave functions;one associated with
the beginning of the time step by propagating forward in time
the initial reference state and the other associated with the end
of the time step by propagating backward in time the final
adiabatic reference state. The primary wave function corresponds
to the superposition state obtained by time propagation of the
reference state at the beginning of every time step. Unlike
MDQT, which performs the full evolution coherently, SPSH
periodically resets the primary state to a final reference state
that contains the largest projection of the primary wave function.
Due to the destruction of coherence at the end of each such
period, transition probabilities and hence also the dynamics are
dependent on this coherence time.29

The mean-field with surface hopping approach implemented
in the present study of the solvated electron has been introduced
earlier.12 It combines the desirable features of the MFT method
and surface hopping into a NA dynamics algorithm. The basic
idea is to perform mean-field evolution of the classical particles
and to correct the trajectories when the mean-field approxima-
tion is no longer valid according to quantitative criteria.12 NA
transitions are affected via the surface hopping prescription
where the primary wave function evolves coherently for the
entire MD simulation. The validity of the mean-field approach

is summarized by the general requirement that trajectories
corresponding to evolution on different quantum states do not
diverge appreciably from each other.9 Quantitatively, this
condition is expressed in terms of a momentum and coordinate
criteria between all pairs of trajectories associated with evolution
on different quantum states. Since surface hopping keeps track
of the reference state and the reference state typically contributes
the most to the mean-field force, the validity criteria are
conveniently evaluated by monitoring only the mean-field and
reference trajectories. As long as the classical momenta and
coordinates from the two trajectories do not diverge, the classical
MFT evolution proceeds. If either criterion fails, the auxiliary
wave function is projected onto the current reference state, and
the evolution restarts from this point. In the case of a surface
hop, the currently occupied state switches to a new reference
state, and the auxiliary wave function restarts from this new
reference state.

From simulations of model two level systems that were
specifically designed to mimic the coupling regions and
asymptotic limits routinely encountered in condensed phase
simulations,14 one can observe several appealing attributes of
MF/SH as compared to both MDQT and SPSH.12 At high
energies, the MDQT, MF/SH, and exact quantum results are in
reasonable agreement. At lower energies, when the classical
coordinate spends significant amounts of time in the coupling
region, MF/SH provides a modest improvement over MDQT
in describing the interference effects. The results from the SPSH
implementation are effectively identical to MDQT. Further, both
MDQT and SPSH preferentially evaluate the NA molecular
dynamics within the chosen basis representation. For systems
whosenaturalbasis representation (i.e., that which most closely
mimics the correct eigenstates) differs from the propagation basis
chosen, MF/SH was found to be considerably more accurate
than either MDQT or SPSH.12 This feature recommends MF/
SH in cases where the preferred basis is not completely clear.

SPSH simulations of solvated electrons30-32 and halide
electron photodetachment,35 nonetheless, give results that are
in reasonable agreement with experiments. Due to the algorith-
mic complexity and computational requirements associated with
the iterative evaluation of the Pechukas expression for the
quantum force,28 the method has not seen much acceptance as
a general approach to quantum dynamics in condensed matter.
MDQT, on the other hand, is easily implemented and compu-
tationally efficient; it has been used to study model proton
transfer in solution,21,36-38 excess electrons in simple liquids,39,40

internal conversion,15,41-43 and electron transfer.44-46 MF/SH
shares many of the conveniences of the MDQT algorithm with
only about a 2-fold increase in computation cost, associated with
the propagation of reference and MF trajectories.

The formalities discussed above notwithstanding, a critical
question is the time scale during which the MF propagation
remains valid. If this time is too short, then the method will
not differ from MDQT. Low dimensional cases were considered
in earlier tests.12 When many degrees of freedom of the classical
bath are interacting strongly with the quantum subsystem, it is
reasonable to be concerned that the MF and reference state
trajectories may diverge, by reasonable quantitative criteria,
more rapidly than for the model systems. This concern follows
from the fact thatall coordinates and momenta must remain
within the specified tolerances to retain validity. Therefore, a
test on a strongly coupled, high dimensional system is needed.
The principal criterion for usefulness is that the MF propagation
persists for times that are significantly longer than the simulation
time step. Correspondingly, one needs to establish that the
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behavior of the simulation is not a sensitive function of the
criteria for validity of MF propagation. Finally, one wants to
establish that MF propagation is valid for times at least as long
as the characteristic decoherence time, after which the reduction
to an adiabatic state and force is arguably justified.

In the following contribution, we present results from our
study of the aqueous solvated electron system using the MF/
SH method. Since the environment is treated classically, nuclear
tunneling;for example, of the protons in the water;is not
addressed.8,9,14,21Also, quantum decoherence is not explicitly
integrated within the method, except as an aftermath of a MF
projection. The current and forthcoming studies focus on both
algorithmic development for the simulation of NA processes
in condensed media and physical understanding of a realistic
prototype exhibiting intimate coupling between the quantum and
classical systems. Experimentally accessible, the solvated
electron47-57 represents one of the simplest models which
partitions in an obvious manner into a quantum subsystem
coupled to a classical solvent environment. Bound states arise
for electrons in polar solvents due to self-trapping in a solvent
cage. Fluctuations in the solvent molecules modulate the states
of the system and completely determine the quantum evolution.
Correspondingly, the state of the electron influences the
particular realization of the solvent classical trajectories, much
as an atomic ion. This dynamic interplay between the quantum
and classical systems makes the solvated electron an ideal
candidate for exploring the features of MF/SH.

The structure of this paper is as follows: After briefly
reviewing the mixed quantum-classical formalism and surface
hopping, we outline the details of the MF/SH algorithm. Results
from the MF/SH treatment of the solvated electron will be
presented in section 3. We conclude in section 4 with a
discussion of promising features and potential improvements
to the technique and provide some comments regarding future
developments of this MQC MD method.

2. Theory and Algorithm Development

Mean-field with surface hopping synthesizes several practical
methods into a unified nonadiabatic molecular dynamics
procedure. In subsection 2.1, we present the classical trajectory58

formalism that is at the heart of many MQC methods. MF/SH
is discussed in subsection 2.2 and the actual implementation,
with explicit reference to the solvated electron system, is
outlined in subsection 2.3.

2.1. Mixed Quantum-Classical Molecular Dynamics.
Central to mixed quantum-classical molecular dynamics is the
assumption that classical particles pursue trajectories and that
a corresponding wave function, deriving its time dependence
solely from a parametric dependence on the classical coordi-
nates, completely specifies the state of the coupled quantum
system. Although formally presumed to exist, in practice the
trajectories are built up, self-consistent with the wave function
evolution, from a sequence of time-ordered configurations. One
direct approach to obtaining the equation of motion for the
classical particles begins by writing the total energy of the
quantum-classical system as

where the terms in square brackets denote respectively the
classical kinetic and potential energy and the final term, the
expectation value of the quantum energy, as an explicit function

of the set of quantum coordinatesr and an implicit function of
the set of classical coordinatesR. For notational simplicity, the
classical particles here are assumed to have equal massM, and
the angled brackets correspond to the usual Dirac notation for
integration with respect to the quantum variables. Note that the
time dependence of the wave function and the Hamiltonian
arises purely from the parametric dependence on the classical
variables. Differentiating with respect to time and observing
the conservation of energy, we obtain Newton’s equation of
motion

where

describes the contribution to the force from the classical-
classical interactions and

defines the quantum force on the classical particles due to
interaction with the quantum subsystem. For the special case
in which Ψ is an eigenstate of the Hamiltonian, the quantum
force term reduces to the Hellmann-Feynman force59

Simultaneously, the wave function describing the quantum
subsystem evolves according to Schro¨dinger’s equation

as a consequence of the time-dependent Hamiltonian,Hq(r ;R(t)),
that changes in response to the classical trajectory. From a basis
state expansion of the wave function,

we obtain the equation of motion for the amplitudes as

whereVkj ) 〈φk(r ;R)|Hq(r ;R)|φj(r ;R)〉 reduces to the electronic
energy εj for the case of an adiabatic basis set anddkj )
〈φk(r ;R)|3R|φj(r ;R)〉 defines the NA coupling between states
φk and φj due to breakdown of the Born-Oppenheimer
approximation. Equations 2 and 8 describe the dynamics of a
coupled quantum-classical system. The various MQC MD
methods differ in their interpretation and choice of the quantum
force that will give the correct evolution of the total system.

2.2. Mean-Field with Surface Hopping Algorithm. In the
MF/SH algorithm,12 the classical variables evolve according to
eq 2 where the auxiliary wave functionΨ entering in the
quantum force expression (eq 4) is a superposition state.
Application of the mean-field approach for a two-state quantum
subsystem coupled to a single classical coordinate is valid only
when

Etot ) [MR4 (t)2

2
+ Vcl(R(t))] +

〈Ψ(r ;R(t))|Hq(r ;R(t))|Ψ(r ;R(t))〉 ) Ecl + Eq (1)

MR2 ) Fcl + Fq (2)

Fcl ) -3RVcl(R) (3)

Fq ) -3R〈Ψ(r;R )|Hq(r ;R)|Ψ(r ;R)〉 (4)

Fq ) -〈Ψ(r ;R)|3RHq(r ;R)|Ψ(r ;R)〉 (5)

ip
∂Ψ(r ,t;R)

∂t
) Hq(r ;R)Ψ(r ,t;R) (6)

Ψ(r ,t;R) ) ∑
j

cj(t)φj(r ;R(t)) (7)

ipc̆k ) ∑
j

cj(Vkj - ipdkj ‚ R4 ) (8)

|(P2 - P1)/(P2 + P1)| , 1 (9)

|(R2 - R1)|/a0 , 1 (10)
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wherea0 is an arbitrary quantum length scale which we have
chosen in this context to be equal to the Bohr radius, andP1,
P2, R1, and R2 are classical momenta and coordinates from
trajectories propagated on two different potential energy sur-
faces.9 A generalization of the criteria from a two state-single
particle system to a many state-many coordinate system is12

where the subscripts [MT] and [RT] denote respectively the
mean-field and reference trajectories, the indexR runs over all
classical particles, andλP and λR are choices of physically
plausible momentum and coordinate criteria. Within a trajectory
scheme, the mean-field momenta and positions are obtained via
mean-field molecular dynamics, while the reference quantities
are obtain by adiabatic molecular dynamics. Because the surface
hopping reference state typically carries the largest contribution
in the auxiliary wave function, monitoring the deviations
between MF and reference trajectories, rather than between all
pairs of trajectories, should estimate the mean-field validity
efficiently and with the same physical content. The momentum
criterion reflects, for example, the breakdown of the mean-field
approximation near turning points where classical evolutions
corresponding to different quantum states can evolve in opposite
directions. The position criterion accounts for the failure of the
mean-field approach to give correct asymptotic behavior of
trajectories outside regions of NA coupling. In instances where
either of the two criteria fail for any classical particleR, the
auxiliary wave function corresponding to the mean-field trajec-
tory is projected onto the currently occupied state and the
simulation restarts using this reference wave function for the
current MF nuclear configuration. NA transitions are incorpo-
rated in the method via the fewest-switches surface hopping
(FSSH) prescription.

In the current implementation, the values ofλP andλR enter
as adjustable parameters. A stringent set of criteria (small values
of λP andλR) give mean-field dynamics interrupted by frequent
projections of the superposition state unto a pure state. As
already noted, in the most stringent criteria limit, MF/SH reduces
to MDQT. A more flexible set of criteria permits the system to
evolve for longer times under the mean-field force before a
projection. A reasonable, physically sensible value forλP, for
example, is∼0.10-0.20.

An artifact of MF/SH is that the reference trajectory is
piecewise continuous interrupted by resets to the current MF
nuclear configuration following a MF projection or a surface
hop. This feature, however, has no important consequence if
these discontinuities are small, as expected. This will be
demonstrated for the present example. After a mean-field
projection, the solvent velocities must be adjusted in order to
maintain energy conservation. Although these adjustments are
small (∼0.05 eV), the question that remains is how should the
adjustment be performed. In the case of surface hopping, using
the direction of the NA coupling between the currently occupied
stateφk and the new stateφj is well justified.14 Here, we choose
to adjust the solvent velocities in the direction of an effective
NA coupling defined as a sum of NA couplings between the
occupied state and all other states weighted by the populations
|cj|2:

Redistribution of the small energy changes among the many
nuclear degrees of freedom should not significantly perturb the
dynamics of the whole system.

2.3. Steps in MF/SH Implementation for the Hydrated
Electron. The simulated system is identical to the electron-
water model implemented in earlier work.27 It is described by
a cubic cell of side length 18.17 Å containing 200 classical
flexible SPC water molecules66,67and one quantum mechanical
electron with a total solvent density of 0.997 g/cm3 at an initial
temperature of 300 K. Standard periodic boundary conditions
are employed and all interactions are evaluated with a smooth
spherical cutoff terminating at 8.0 Å.68 The electron-water
interactions are described by a previously developed pseudo-
potential.69 Utilizing the block Lanczos70 algorithm with a
spectral filter preconditioning scheme, the lowest 16 adiabatic
eigenstates of the excess electron are evaluated on a 163 grid in
a plane-wave representation.27 NA MQC MD is performed by
using the MF/SH procedure, and the classical equation of motion
is integrated with the velocity Verlet algorithm using a 0.50 fs
MD time step. Propagation of the expansion coefficients is done
using the fourth-order Runge-Kutta numerical integration
method.71

Two types of experimental conditions are modeled in the
current study. For the simulation of electron photoinjection into
water, the initial solvent configuration corresponds to an
equilibrated pure water configuration obtained from a long
classical MD trajectory.27,72 One of the relatively high energy
adiabatic excited statesφk (in the range 1.9-2.2 eV above the
vacuum level) is selected as the initial primary, auxiliary, and
reference wave functions. We have examined 15 trajectory
examples in this work. For simulation of the pump-probe
experiment,30 the starting solvent configuration corresponds to
an equilibrated ground state electron-water system obtained
by first adding an excess electron into neat water and equilibrat-
ing the resulting ground-state electron for 15 ps. Following
equilibration, we ran a 35 ps adiabatic ground-state trajectory
and randomly select 20 configurations from this trajectory as
starting points. The electron is then promoted from the ground
state to the first excited state, and the simulation begins with
the primary, auxiliary, and reference wave functions set equal
to this excited state.

The momentum and coordinate mean-field criteria enter in
the method as parameters. To explore the effects of the choice
of mean-field conditions, we execute several trajectories from
the same solvent configuration with different criteria. Because
the solvent configuration number is used as the initial seed for
the random number generator, the trajectories within each MD
set (started form the same solvent configuration) share a
common random number sequence. For all trajectories, we set
the coordinate criterionλR equal to the Bohr radius, while we
set the momentum criterionλP either to 0.05, 0.10, 0.20, or 0.50.
In agreement with earlier findings from simulations of model
systems,12 we observe the violation of the momentum criterion
long before that of the coordinate criterion. Hence, for the
solvated electron system, we can discard the position criterion
altogether and only monitor the deviations in the solvent
molecule momenta between the mean-field and reference
trajectories. As noted earlier, one would expectλP values of

|PR
[MT] - PR

[RT]|
|PR

[MT] + PR
[RT]|

≡ ΛP < λP, all R (11)

|RR
[MT] - RR

[RT]| ≡ ΛR < λR, all R (12)

d̃eff
R ≡ -∑

j

|cj|2dR
kj

) ∑
j

|cj|2dR
jk* (13)
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∼0.1-0.2 to be plausible practical choices, and 0.05 and 0.50
are considered likely extremes.

These choices are related, after all, to some characteristic
length and velocity scales. For the simpler one-dimensional
model, the momentum criterion can be written as

where we have replaced the inequality with an equality so that
we can isolate the very instance of a MF violation. Let us also
express the momentum of the particle on the first surface in
terms of the momentum on the second surface,P1 ) âP2, where
â is a scale factor. Solving for this scale factor, we obtain

For λP ) 0.10 - 0.20, the momentum on the first surface is
82-67% (â ) 0.82-0.67) of the momentum on the second
surface. A criterion of 0.05 and 0.50 scales the momentum by
0.90 and 0.33, respectively. Although more intricate to analyze,
the plausible choice ofλP ) 0.10-0.20 for the multidimensional
case should carry the same physical content as for the one-
dimensional model.

Under these criteria, MF/SH distinguishes distinct evolutions
when the particles are separated by a characteristic length scale
of approximately the Bohr radius (eq 10) and a velocity scale
of ∼0.18-0.33. A length scale of the Bohr radius is an
appropriately stringent criterion, because the divergence in the
coordinate is less than a chemical bond. When the asymptotic
products associated with evolution on distinct surfaces are
spatially separated by only∼0.5 Å, one does not have sufficient
resolution to discriminate that the asymptotic channels are not
identical. Mean-field propagation under this condition, therefore,
is practical. As an offspring of the WKB approximation, MFT
breaks down near classical turning points, where classical
evolutions corresponding to different quantum states can proceed
in opposite directions. We have verified from direct simulation
data that, forλP ) 0.10- 0.20, classical evolution in opposite
directions persists for only a single MD time step (0.50 fs) and
that this is the very time step that triggers the MF violation.
Out of all violations accumulated along a MF/SH trajectory,
less than 10% are due to momenta proceeding in opposite
directions. Although it is seductively appealing to be able to
assign a priori these quantitative criteria based solely on intuitive
insight of the system under consideration, it is not possible for
the momentum criterion. To do so would require knowledge of
the ground and excited state topological details;an endeavor
that is practically impossible. However, one only needs to run
a few sample trajectories for the system under study to determine
if a set of criteria is appropriate. As long as the classical
momenta on different surfaces do not proceed in opposite
directions for more than a few time steps, MF/SH should be
viable.

We now outline the algorithm for the simulation of the excess
electron in water system. Classical coordinatesR(t), half-step
velocitiesR4 (t - ∆t/2), velocitiesR4 (t - ∆t), and the quantum
state corresponding to the desired initial conditions are specified.
Although MF/SH in general can accommodate a diabatic
representation, we choose an adiabatic representation of the
wave function in the present study. The system starts in a pure
state with the expansion coefficients initialized asck ) 1.0 and
all others set to zero. The primary, auxiliary, and reference wave
functions are identical at timet ) 0. Two adiabatic MD time

steps are taken in the beginning to obtain NA coupling/velocity
dot products needed for the interpolation/extrapolation procedure
discussed below. Initially, the reference ([RT]) nuclear coor-
dinates and velocities coincide with the corresponding mean-
field ([MT]) values.

For Every MD Time Sequence,tm, Perform the Follow-
ing: Mean-Field Trajectory. Step 1. EigenValue Problem.For
the current nuclear configurationR[MT] (tm), compute the set of
adiabatic eigenstates{φ[MT] (tm)}.

Step 2. Classical Dynamics.Compute the mean-field forces
corresponding to the propagated superposition state and compute
the classical solvent forces. Integrate the velocities to the current
time step

Step 3. NA Coupling/Velocity Dot Products.From the sets
of eigenstates{φ[MT] (tm)} and {φ[MT] (tm - ∆t)}, compute the
set of approximate NA coupling/velocity dot products using the
differentiation chain rule

Step 4. WaVe Function Propagation.With a smallerquantum
time stepδt ) 0.001∆t, propagate the expansion coefficients
(eq 8) corresponding to the primary and auxiliary wave functions
from tm - ∆t to tm using the fourth-order Runge-Kutta
numerical integration method. We linearly interpolate between
εk(tm - ∆t) andεk(tm) to obtain the intermediateεk ) Vkk values
needed for the integration. Likewise, we interpolate and
extrapolate from [dkl ‚ R4 ](tm - 3∆t/2) to [dkl ‚ R4 ](tm - ∆t/2) in
order to obtain NA coupling/velocity dot products betweentm
- ∆t andtm. Simultaneous with the wave function propagation,
the FSSH probabilities,

where

are numerically integrated fromtm - ∆t to tm for all statesj
using the Runge-Kutta integration time stepδt.

Step 5. Surface Hopping.Generate a random numberê
uniformly distributed on the interval (0,1) and compare it with
the transition probabilities calculated in the previous step. A
switch to statej ) n + 1 occurs if∑j)1

n gkj < ê < ∑j)1
n+1 gkj, for

0 < n < K, whereK is the total number of trajectories.
Reference Trajectory. Step A. EigenValue Problem.For the

current solvent nuclear configurationR[RT](tm), compute the set
of adiabatic eigenstates{φ[RT](tm)}.

Step B. Classical Dynamics.Compute the Hellmann-
Feynman forces corresponding to the reference statek and
compute the classical solvent forces. Integrate the velocities to
the current time step:

R4 [MT] (tm) ) R4 [MT] (tm - ∆t/2) + 1
2

∆t(F[MT]
q (tm) +

F[MT]
cl (tm))/M (16)

[dkl ‚ R4 ](tm - ∆t/2) ≈ 1
2∆t

(〈φk(tm - ∆t)|φl(tm)〉 -

〈φk(tm)|φl(tm - ∆t)〉) (17)

gkj(tm) )
∫tm-∆t

tmdt bjk(tm -∆t)

|ck(tm)|2
(18)

bkl ) 2p-1 Im(ck*clVkl) - 2 Re(ck*cldkl ‚ R4 ) (19)

R4 [RT](tm) ) R4 [RT](tm - ∆t/2) + 1
2

∆t(F[RT]
q (tm) + F[RT]

cl (tm))/M
(20)

|(P2 - P1)/(P2 + P1)| ) λP (14)

â ) {(1 - λP)/(1 + λP) P1 and P2 in the same direction
-(1 - λP)/(1 + λP) P1 and P2 in opposite directions

(15)
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Step 6. Mean-Field Criteria Check.If a hop did not occur,
check the mean-field validity criteria:

If ΛP > λP or ΛR > λR, the auxiliary wave function is projected
onto the currently occupied state by settingcl

prim ) cl
aux ) δkl,

wherek denotes the reference state.
Step 7. Velocity Adjustment.After a NA transition, the

classical nuclear velocities are adjusted in the direction of the
NA coupling vector to absorb/release the quantum energy gap
accompanying a relaxation/excitation process.21 For the case of
a mean-field projection, the nuclear velocities are adjusted in
the direction of an effective NA coupling defined as a sum of
NA couplings between the occupied statek and all other states
j weighted by the populations (eq 13).

Step 8. Update Nuclear Coordinates and Velocities.Integrate
the nuclear coordinates and half-step velocities by one MD time
step:

Step 9. Reinitialization of Reference Dynamics.After a surface
hop or a mean-field projection, the reference dynamical quanti-
ties are reinitialized to the mean-field dynamical quantities. The
reference trajectory data are replaced by the corresponding
mean-field positionsR[MT] (tm + ∆t) f R[RT](tm + ∆t), velocities
R4 [RT](tm) f R4 [RT](tm), and half-velocitiesR4 [MT] (tm + 1/2∆t) f
R4 [RT](tm + 1/2∆t).

3. Results for the Aqueous Solvated Electron

In this section, we present the results from our simulations
of the electron photoexcitation and electron injection experi-
ments. The trajectories are analyzed with respect to the choice
of mean-field momentum criterion, and comparisons with former
SPSH simulations are made when appropriate.

We first consider the behavior of the solvated electron
following photoexcitation from the equilibrated ground state to
the first excited state. Figure 1a-d presents a dynamical history
of the adiabatic eigenstates for representative trajectories initiated
from the same equilibrium ground state solvent configuration
with momentum criterion set equal to 0.05, 0.10, 0.20, and 0.50,
respectively. The bold trace shows the currently occupied
reference state, while the vertical tick marks along the horizontal

line at -4.5 eV indicate the time associated with a mean-field
validity failure. The energy conservation for the whole system
is also monitored via the horizontal line fluctuating about 0 eV.

At time t ) 0, the equilibrium ground state electron is
promoted to the first excited state. As the solvent molecules
rearrange to accommodate the charge density of the newly
occupied state, the energies of the ground state and low lying
excited states increase dramatically, resulting in a sizable energy
gap between the first excited state and higher lying states. The
energy of the first excited-state fluctuates about a constant value
for about 200-600 fs, after which the electron undergoes a
nonradiative transition back to the ground state. As observed
previously,32 the solvent relaxation following photoexcitation
typically acts to raise the energy level of the ground state to
within 0.5 eV of the first excited state until radiationless decay
drops the electron back to the ground state. Subsequent
equilibration in the ground-state reforms the energy gap between
the equilibrium solvated electron and the band consisting of
the first three excited states.

Although qualitatively similar to the SPSH simulations of
the photoexcited solvated electron, these MF/SH trajectories do
exhibit features that are unique to the current method. Im-
mediately noticeable are the differences in the trajectories as a
consequence of the choice of MF momentum criterion. From
the time of the initial formation of the first excited state to about
190 fs, the paths through state space for all four simulations
appear to be identical despite the fact that the simulation with
MF criterion set equal to 0.05 has experienced eight MF
projections, while the one with criterion equal to 0.50 has failed
only once. The NA transition at 192 fs following photoexcitation
causes theλP ) 0.05 trajectory to diverge from the other three
systems. TheλP ) 0.10, 0.20, and 0.50 trajectories resemble
each other for about 350 fs, after which theλP ) 0.10 system
undergoes relaxation to the ground state (360 fs) and evolves
differently from the latter two systems. This divergence of the
paths shown in Figure 1 appears to be a direct result of the
stochastic element in the fewest-switches surface hopping
method. Following a NA transition, the ground state force will
be dramatically different from the excited-state force driving
the unrelaxed systems. Trajectory differences after these transi-
tions therefore are to be expected. These differences change
the solvent dynamics, which in turn alter the quantum subsystem
evolution. On the other hand, Figure 1c,d shows two state space
trajectories diverging from each other after 350 fs, although both
systems continue to evolve from an excited-state force for
another 200 fs. TheλP ) 0.20 system experiences a MF
projection at 355 fs for a total of five projections, while theλP

) 0.50 system has undergone three projections and continues
to evolve from a MF force until a validity violation at 375 fs.
For these two trajectories, the divergence is due to quantum
forces resulting from the different time development of the
superposition auxiliary wave function in the MF/SH algorithm
with different criteria.

The close resemblance among parts b and d of Figure 1 at
early times should not be interpreted as suggesting that the MF
projections are unimportant for short time dynamics. It is
apparent that at long times the state space trajectories are
distinct; however, examination of the solvent trajectories
indicates that this is the aftermath of small accumulated
variations in the nuclear paths at early times. Furthermore, these
variations alter the evolution of the density matrix elements as
manifest in the various NA transition times. Recall that we
initiate the photoexcitation simulations with the same initial
conditions and with the same random number seed; each time

|P[MT]
R - P[RT]

R |
|P[MT]

R + P[RT]
R ≡ ΛP

?
< λP for all R (21)

|R[MT]
R - R[RT]

R |
|R[MT]

R + R[RT]
R ≡ ΛR

?
< λR for all R (22)

R[MT] (tm + ∆t) ) R[MT] (tm) + ∆tR4 [MT] (tm) +
1
2
∆t2(F[MT]

q (tm) + F[MT]
cl (tm))/M (23)
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2
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step in Figure 1a-d has associated with it the same random
number. These identical random numbers are compared with
each set of transition probabilitiesgkj for the various λP

simulations. The observed variations in transition times are due
to variations in thegkj as the nuclear paths diverge. Figure 1
does not delineate a particular projection (such as the one at
355 fs for theλP ) 0.20 system) as dynamically more important
than others. Based on the observations made above, and similar
observations for other representative trajectories (not shown),
we find that the moderate criteriaλP ∼ 0.10-0.20 lead to well-
behaved trajectories. The MF criteria persist for an excited-
state reference system for an average of 30-70 fs. ForλP )
0.20, this corresponds to 70 classical molecular dynamics steps
and about 25 times the coherence time between the ground and
excited state.33,34 Further, the dynamics observed is evidently
not a sensitive function of the choice ofλP. Hence, for this case,
the MF/SH algorithm is clearly completely viable.

Next, we examine the results from our simulation of the
electron injection experiment. Figures 2 and 3 show representa-
tive paths through state space with the momentum criterionλP

again set equal to 0.05, 0.10, 0.20, and 0.50. At timet ) 0, an
energetic electron is placed inside a volume of neat water. The
quantum solute quickly cascades through the closely spaced
periodic “continuum” states into the lower three p-like excited
states and finally into the ground state. We observe a systematic
lowering of the occupied energy level as well as levels below
the occupied state during the relaxation. Decay to the ground

state is accompanied by the normal precipitous drop in the
ground-state energy level and separation of the three lowest
excited state states from the continuum band by about a 1.0 eV
gap. These features are the typical behavior observed in the
original SPSH simulation of the solvated electron.67,72

In contrast to the results presented just above, the quantum
dynamics here responds more sensitively to the choice of
momentum criterion. Most apparent is the difference in the
elapsed time after which state space trajectories associated with
different mean-field criteria deviate from each other. Under the
ground state photoexcitation condition, the four choices of
criterion give trajectories that closely resemble each other up
to about 190 fs. Only after 350 fs did we encounter noticeable
deviations among theλP ) 0.10, 0.20, and 0.50 systems.
Trajectories obtained under the electron injection conditions are
similar only up to about 20 fs; deviations become noticeable
after about 45 fs. Within the first 20 fs, the mean-field condition
failed 5 times for the simulation with the criterion ofλP ) 0.05,
twice for λP ) 0.10, once forλP ) 0.20, and not at all forλP

) 0.50. By comparison, for the ground-state photoexcitation at
the earliest times, mean-field dynamics is valid for 15-30 fs,
while mean-field dynamics following electron injection is valid
for 5-10 fs.

Nevertheless, the reason for MF failures is the same in both
situations;coupling among electronic states. For electron
injection, the frequency of MF projections and the observed
rapid cascade through state space (see Figure 2) is due to the

Figure 1. Dynamical history of the adiabatic eigenstates for a typical set of trajectories describing electron photoexcitation with mean-field momentum
criterionλP set equal to (a) 0.05, (b) 0.10, (c) 0.20, and (d) 0.50. Initial conditions and random number sequences are identical in all four cases. The
bold trace shows the currently occupied state, while the vertical ticks along the horizontal line at-4.5 eV indicate the times associated with a
mean-field validity failure. The fluctuating line at 0 eV indicates deviations from energy conservation.
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strong coupling among the poorly localized states of the injected
electron. MF/SH determines a MF projection based on the
deviation between the adiabatic and mean-field trajectories. As
the auxiliary wave function develops into a superposition state,
the mean-field force will eventually diverge from the reference
Hellmann-Feynman force. In fact, the expression for the mean-
field force73 explicitly shows the importance of the NA coupling:

In an adiabatic basis, the quantum force on each classical
particleR reduces to

The first contribution to the mean-field force comes from the
average of the forces evaluated from each adiabatic potential
energy surface, weighted by the occupation of each state|ck|2.
The second contribution in the direction of the NA coupling
accounts for the effective force associated with mixing of
surfaces.

As now anticipated, the state space trajectories deviate from
each other as we vary the MF criterion due to differences in
times of NA transition. Once the quantum subsystem changes
state, the quantum force that drives the dynamics of the coupled
quantum-classical system will be remarkably different from
the other state forces. For the electron injection case, these
transitions occur very early in time compared to the photo-
excitation case. Figure 2a shows a series of NA transitions
occurring in roughly the same time frame as the series shown
in Figure 2c. The initial transition from the fifth to the fourth
excited state perturbs the classical evolution. Subsequent
mismatch between the transition times causes the trajectories
to ultimately diverge from each other.

Determining how the MF projections contribute to the
divergence is too complicated to ascertain. As noted earlier,
small differences in trajectories can lead to NA transitions at
different times with rapid divergence in the subsequent dynam-
ics. This is illustrated in Figures 2 and 3. We first compare
parts b and d of Figure 2 (λP ) 0.10 and 0.50). Both systems
undergo a NA transition from the fifth to fourth excited state
after about 75 fs following electron injection. During that time
interval, theλP ) 0.10 environment has experienced 10 MF
projections, while theλP ) 0.50 system has experienced three.
The state space trajectories are similar up to 40 fs, with five
projections for the more stringent criterion and a single
projection for the relaxed one. In Figure 2c, with an intermediate
λP value of 0.20, the choice of MF validity criterion affects the

Figure 2. Short-time dynamical history of the adiabatic eigenstates for a typical set of trajectories following electron injection into pure water with
mean-field momentum criterionλP set equal to (a) 0.05, (b) 0.10, (c) 0.20, and (d) 0.50. The bold trace shows the currently occupied state, while
the vertical tick marks along the horizontal line at-0.20 eV indicate the times associated with a mean-field validity failure. The fluctuating line
at 0 eV indicates deviations from energy conservation.

Fq ) -∇R〈Ψ(r ;R)|Hq(r ;R)|Ψ(r ;R)〉

) - ∑
R
∑
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ck
*cj[〈φk|∇RR
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evolution of the primary wave function sufficiently that the
single MF projection at 12 fs leads to a NA event 8 fs later. As
stated previously, the interplay between the mean-field method
and surface hopping prevents us from assigning a particular
projection as more significant than others. One cannot determine
a priori which criterion value gives theimportantprojections
at the appropriate time.

The important conclusion that one can draw is that for
physically reasonable values ofλP ∼0.10-0.20, MF projections
occur only after a number of time steps (7-10 fs in this case),
and that the dynamics is not a sensitive function of the MF
criterion. Further, the time scale between MF projections is
longer than the expected electronic coherence time.33,34(We note
that the coherence time for the injection case has not been
independently evaluated.) For the injection case, one might
expect that the difference between MF/SH and MDQT trajec-
tories is small at early times since the time between projections
is small. However, the evidence that the adiabatic basis is a
less accurate description of the states (i.e., manifestly strong
mixing) tempers this expectation. Further studies along these
lines of inquiry would be of interest.

Due to the simulation of dual trajectories, MF/SH is com-
putationally more involved than MDQT. The 2-fold increase
in computation cost stems from the additional (the reference
trajectory) iterative solution of eigenvalues and eigenfunctions
via the Lanczos algorithm. The quantum chemistry calculation
is far more expensive than the classical dynamics used to
generate the MF and reference trajectories. One could choose,

when the system under study is computationally demanding, to
implement an approximate MF/SH algorithm by propagating
only the MF dynamics. An approximate reference trajectory is
then generated by accumulating the reference Hellmann-
Feynman forces along the MF trajectory. That is, step B in the
algorithm above is discarded and the Hellmann-Feynman forces
for the reference statek are evaluated from the eigenstate
corresponding to the nuclear configurations comprising the MF
trajectory. Our simulations of the hydrated electron show that
this approximation is adequate for short times. The MF criteria
are violated somewhat earlier in the full MF/SH algorithm than
in this approximate scheme. However, given the range of criteria
that appear acceptable, this does not present a limitation. Further,
we note that simulations with a more stringent convergence
criterion for the Lanczos algorithm27,70 provided somewhat
longer time scales for MF validity. Nevertheless, our choice of
convergence criterion does enforce energy conservation, as
evidenced by the horizontal line fluctuating about 0 eV in the
figures. The accuracy of the results herein is adequate for
verifying the viability of MF/SH for the simulation of large,
realistic, strongly interacting systems.

Conclusion

To gain insight into the viability and behavior of the mean-
field with surface hopping (MF/SH) algorithm for the simulation
of complex chemical systems, we have implemented the method
and performed nonadiabatic (NA) mixed quantum-classical

Figure 3. Dynamical history of the adiabatic eigenstates following electron injection into pure water. Trajectories are the same as those in Figure
2, but for longer time scales. The vertical ticks along the horizontal line at-4.5 eV indicate the times associated with a mean-field validity failure.
The fluctuating line at 0 eV indicates deviations from energy conservation.

2554 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Wong and Rossky



(MQC) molecular dynamics (MD) simulations for the aqueous
solvated electron. Results reproduce key qualitative features
observed in former simulations using stationary phase/surface
hopping (SPSH).27 The complexity of the SPSH algorithm in
addition to the associated computational cost impeded the
development of this method as a general purpose MQC MD
scheme. The study reported here indicates MF/SH to be easily
implementable and practical even for this experimentally
accessible quantum-classical system. Although MF/SH is 2
times more computationally demanding than MDQT,21 MF/SH
is theoretically well founded at short times11 and has the
advantage that it more readily handles systems when the natural
representation and the computational basis differ in the coupling
region.12 As such, we anticipate MF/SH to be useful for systems
for which one does not have a priori knowledge of the adiabatic
vs diabatic characteristics and for intermediate cases. An
approximate form of the algorithm nearly eliminates the
additional cost. The representative trajectories considered here
delineate the important features of the MF/SH algorithm for
the simulation of NA processes occurring in a prototype
quantum-classical system. Mean-field dynamics proceed on a
longer time scale in the first excited state environment than
under the conditions of electron injection. The shorter time
intervals between failure of the mean-field approximation in
describing the relaxation dynamics following injection of an
electron into water are due to the strong solvent-induced
couplings among the delocalized states of the initial energetic
electron. Trajectories associated with different choices of MF
momentum criterion differ most notably in the time of NA
events. They then quickly diverge from each other following a
NA transition, as expected.

A primary motivation for the present work was the uncertainty
as to whether the MF criteria would be violated so rapidly in a
strongly coupled many-coordinate system that MF propagation
for useful periods of time would not be possible, such that the
MF/SH method would not be viable. The present results indicate
first that the momentum criterion is the only one that needs to
be considered. For the momentum criterionλP chosen in the
anticipated physically reasonable range of 0.10-0.20, we do
find that valid MF trajectories persist for many simulation steps.
For the photoexcitation conditions, where the solvent is initially
adapted to a somewhat similar electronic state, the MF propaga-
tion remains valid for 30-70 fs, equal to a comparable number
of solvent time steps and many times the electronic coherence
time scale. For electron injection conditions, the times are
shorter, 7-10 fs, but retain the same viability of the algorithm.
It is also worth noting that these results may provide some useful
guidelines for applicability of a pure MF propagation.

For systems exhibiting extensive solute-solvent coupling
involving many bath modes, such as the aqueous solvated
electron, the details with which we treat the loss of coherence76

among diverging alternative nuclear paths can dramatically
influence the NA transition probabilities.33 To be valid, the
characteristic time between successive collapses of the system
superposition state unto a pure state due to MF failures or surface
hops should be considerably greater than this coherence time.
As can be seen from eq 18, the stochastic procedure used for
determining a NA transition is directly related to the coherence,
pkj. Maintaining coherence for a longer time interval facilitates
the probability of a transition whereas a collapse of the wave
function unto a pure state limits the transition probability. The
present work indicates that artificial decoherence introduced by
the MF/SH algorithm will occur on a considerably longer time
scale than the underlying physical decoherence.33,34

Decoherence can be easily introduced in MF/SH by employ-
ing a reduction mapping technique74,75 or by a direct damping
of the nondiagonal density matrix elements as suggested by
Tully.14 Work is currently in progress to study the behavior of
the solvated electron as a function of the decoherence time scales
using a decoherent version of the MF/SH algorithm. The
inclusion of decoherence in MF/SH will be the topic of future
studies of the solvated electron in water and in methanol.
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